Darboux Transformations, Infinitesimal Symmetries and Conservation Laws for Nonlocal Two–Dimensional Toda Lattice
نویسنده
چکیده
The technique of Darboux transformation is applied to nonlocal partner of two– dimensional periodic An−1 Toda lattice. This system is shown to admit a representation as the compatibility conditions of direct and dual overdetermined linear systems with quantized spectral parameter. The generalization of the Darboux transformation technique on linear equations of such a kind is given. The connections between the solutions of overdetermined linear systems and their expansions in series at singular points neighborhood are presented. The solutions of the nonlocal Toda lattice and infinite hierarchies of the infinitesimal symmetries and conservation laws are obtained.
منابع مشابه
1 Darboux Transformations for Nonlocal Two – Dimensional Toda Lattice
The technique of Darboux transformation is applied to nonlocal partner of two–dimensional periodic A n−1 Toda lattice. This system is shown to admit a representation as the compatibility conditions of direct and dual overdetermined linear systems with quantized spectral parameter. The generalization of the Darboux transformation technique on linear equations of such a kind is given. The solutio...
متن کاملOn Schur Flows
For the nite Schur (dmKdV) ows, a nonlocal Poisson structure is introduced and shown to be linked via BB acklund-Darboux transformations to linear and quadratic Poisson structures for the Toda lattice. Two diierent Lax representation for the Schur ows are used, one to construct BB acklund-Darboux transformations, the other to solve the Cauchy problem via the trigonometric moment problem.
متن کاملConservation Laws and Symmetries of Generalized Sine- Gordon Equations
We study some systems of non-linear PDE's (Eqs. 1.1 below) which can be regarded either as generalizations of the sine-Gordon equation or as two-dimensional versions of the Toda lattice equations. We show that these systems have an infinite number of non-trivial conservation laws and an infinite number of symmetries. The second result is deduced from the first by a variant of the Hamiltonian fo...
متن کاملIntegrable generalization of the Toda law to the square lattice.
We generalize the Toda lattice (or Toda chain) equation to the square lattice, i.e., we construct an integrable nonlinear equation for a scalar field taking values on the square lattice and depending on a continuous (time) variable, characterized by an exponential law of interaction in both discrete directions of the square lattice. We construct the Darboux-Bäcklund transformations for such lat...
متن کاملConservation Laws and Potential Symmetries of Linear Parabolic Equations
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002